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Abstract—In this paper, the elastic field created by randomly distributed inclusions is studied. The
inclusions are considered to be randomly distributed in the material, and have random orientation
and size. The random point field model is proposed to describe the randomness of inclusion
position, orientation and size. As a special case, when phase transformation inclusions are uniformly
distributed in the material, and have non-random orientation, the theory gives the same result as
Moriand Tanaka (1973. Acta Metallurgica 21, 571). The elastic field created by randomly distributed
dislocation loops is also considered in some detail, and it is found that the continuum theory of
dislocation loops is applicable only when the size of the dislocation loop becomes infinitesimal.

INTRODUCTION

An inclusion is defined as a sub-domain Q in domain D, where cigenstrain is given in Q,
and is zero in D-Q. It may represent a phase transformation particle, a dislocation loop,
cte., which are the sources of internal stress. The existence of inclusions can greatly influence
the properties of the material. Thercfore, it is important to investigate the clastic ficld
created by inclusions. Seldom is only a single inclusion formed in a material, and it is
natural that the random distribution of inclusions enters in consideration.

Mori and Tanaka (1973) have calculated the average internal stress in the matrix of a
material containing inclusions with transformation strain. They assumed that the average
stress {a,)'> in the matrix is constant, and derived the stress field {s],) within an inclusion
using Eshelby’s famous solution (1957). By the aid of the ergodic theorem, i.e.

v<a;> +(1—u)<af> =0, ()

where vy is the volume fraction of inclusion, the average stress in the matrix was calculated.
Tandon and Weng (1986) have further developed Mori and Tanaka’s method to obtain the
stress ficld in a material containing inhomogeneities with different elastic modulus from the
matrix. These approaches are simple, and are intuitive methods with some understanding
of randomness. They are applicable only for uniform distribution of inclusions with non-
random orientation.

The present investigation attempts to develop a statistical theory which can be appli-
cable to a more general random inclusion problem. The random point field model is
proposed to describe the randomness of inclusion position, orientation and size. As a special
case, when phase transformation inclusions are uniformly distributed in the material, and
have non-random orientation, the theory gives the same result as Mori and Tanaka. The
elastic field created by randomly distributed dislocation loops is also considered in some
detail, and it is found that the continuum theory of dislocation loops is applicable only
when the size of dislocation loop becomes infinitesimal.
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BASIC THEORY

The equation of classical elasticity can be written in the form
—E; Cijkl Oy = qi @
where y, is the displacement component which is zero for the stress-free state. If some
regions of material are subjected to such non-elastic deformations as thermal expansion,
phase transformation, etc., which are called eigen-displacements, the total displacement
component u} is,
0= u+u. 3
By substituting eqn (3) into eqn (2). the equation becomes,
=& Ciut Ce(? —ul) = g; @)
or,
—ajcijkl ak“f = qi-aiCi/'kI ak“/T- &)
If the Green's function for an unbounded medium is defined as G(x - x’),

0;Ciixt OxGim(x—X") = — (X —X") 6)

we obtain
up = u)— '[G,,,-(x—x')O,C,,,‘, deuf do (x) U]

where v is the region taken by inclusions, and u) is the displacement which would be
presented in the homogencous medium under the action of an external stress ficld.

Let us apply the operator def (¢ = def w) to both sides of eqn (7), taking into account
the symmctry of C,,, we obtain the equation for the strain,

£, =ep+ J‘ Kt (x =X )Cpytpy dr (x”) ®

where (¢, = def uy) is an external strain field, c,',r,, is the eigenstrain, and

Ki,kl = —(ai BIG/k)(:k)(/I)
= —~1(9, CiGu+0; 0,Gu+0; 0Gy+0; 6,Gy). &)

The equation for stress follows from eqn (8), where o)) = Couitiss
0y =0,— fsi/kl(x—x’)ﬂzldl’(x') (10)

where
St = i[kl‘s (x'—x)— Clj[lq Kpqmn Conkt -
The basic equations for eigenstrain problems are derived as eqns (8) and (10). In what

follows. we consider that the eigenstrain occurs in located regions. In such a case, the
eigenstrain can be represented in the form
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3= V) ()
a= |

where V,(x) is the characteristic function of the region occupied by the a-th inclusion. The
tensor &% is a constant random variable within the inclusions. and Nv is the number of
inclusions in the volume ¢.

l xeV,
vux)={0 eV (12)

where V, is the region of the a-th inclusion. By substituting eqn (11) into eqns (8) and (10),
we derive that

Ne

eij = 83+ Z J.Kukl(x’x')cklpqsp‘q Va(xl)dl. (x’) (13)
a=1 JU

Ne

o, =0)— Y J.S,-,-k,(x—x’)sk‘, V,(x)de(x). (14)

a=1 Jr

Since the location, size and orientation of inclusions are all random variables, the stress
and strain determined by eqns (13) and (14) are random ficld variables. In order to derive
their statistical characteristics, we propose the Random Point Field Model as follows.

Assumptions
(1) In volume ¥V, the number of inclusions obeys the Poisson distribution with par-
ameter 4, 1.e. forn=0,1,2,...

PN, =n]l = (nt)"' [Jl(r) dv (r)T exp [— J/’.(r) dv (r)] (15)

where PN, = n] is the probability of N, = » and 1 is the mean value of inclusion number
in unit volume. (2) {N,; v < ¥V} has independent increments in regions with a restriction
for the intersection of them, i.¢. forv = v, vy, ..., 0

k
PIN, =n.N,, =ns,....N, =m] =[] PIN, =n]). (16)
i=1

According to eqns (13) and (14), the perturbation term in strain and stress field caused by
random inclusions can be represented in the general form:

AAﬂ==iAW@-nﬂ%) (17)

where r, is the center location of the a-th inclusion, and ®, stands for the orientation and
size of the a-th inclusion. The characteristic function of random field variable 4,, is defined
as

M, = Elexp ({a,;A,)] (18)
where a,; is a constant tensor and / is the imaginary unit.

By substituting eqn (17) into eqn (18), the detailed expression for M, can be derived
as follows



1460 B. WaNG er dl.

M,= El:cxp (la,, Z AP (x ru;d>,,))]. (19)

awm |

By using the properties of conditional expectation, eqn (19) can be represented in the form

} (20

where E| ] denotes the mean for the orientation of an inclusion. According to the assump-
tions, it can be obtained from (see Wang, 1988)

E {exp [l Y ay A (x r,;d>,,)] }
AR T

~ 1
= {(J'ldv) JAE {exp[la,-,-A},‘”(x—-r,,;Q,)]}dv (r,)}. 2n

By substituting eqns (15) and (21) into eqn (20). the detailed expression for M, can be
represented in the form

M,=P[N, =0}+ Z PN, =n]E {exp [l Z a,-,»A.(}"]
nw| a=1

M, =cxp {J‘lE[cxp (la, A — 1] dv (r,)} (22)

Given y, is the cumulant of the n-th order and by using the properties of the characteristic
function, we know;

ry,=("M,/dd") (a4 = 0). (23)

So, the mean value is
(A = J"E[A‘“' -r,;®,)]dv(r,). (24)

For the same reason, the correlation function can be derived casily.
According to eqn (24), the mean value of the strain field and stress field at point x can
be represented in the form

Cyd = €0+ f Mr.)E U Kpt(X =X")Cupgts dv(x')]du (r) 25)
{oy) = 0’3 - f Ar)E I: J Sim(x—x")eg do (x')] du(r,) (26)

where ¢, is the region of the ath inclusion with its center at r,. If it is assumed that the center
locations of inclusions form a Homogeneous Poisson Field, i.e. 4 = m (const.), eqns (25)
and (26) become



Elastic field created by randomly distributed inclusions 1461

(ey) = 83 +m '[ E [ 4[ ‘Kijkl(x —=A—1)Chipglr dU(A)] dv(r.) @7

(o> = af—m £ E[[ Syulx—A—r,)et do (A)] do(r,) 28)

where v, is the region of the inclusion with center at zero, and X’ = A+r,.

(1) The average field for an unbounded medium
According to Kunin's discussion (1983), we know that:

J K.’/u(x —A-r,)dv(4) = Bijlcl
f Sir(x—A—r,)dv(A) =0 (29

where B, is the elastic compliance tensor. As a consequence of eqn (29), it is obtained
that

ey =€y +v,(eld
(o) = "3 (30)

where v, is the volume fraction of inclusions. Equation (30) is just the result which can be
obtained according to the ergodic theorem.

(2) The mean value of field variables within an inclusion
In this case, we can assume that there is an inclusion at point x, that is,

i) =

or,—x) reV,
{ &1))

¢V,

where V, is the region of the inclusion with center at x. If r,e V., and the inclusions are
ellipsoidal inclusions, the following expressions can be obtained (see Kunin, 1983)

J: Kljkl(x —A-r)dv(d) = A (32)

j Siu(x—A~r,) dv(d) = Dy (33)

where the components of tensor 4 and D are shown in the Appendix. By substituting eqns
(32) and (33) into eqns (25) and (26), the mean values of strain and stress within an
inclusion are obtained as

Celp) = e+ el + (1 = 0) A Cuipgtiy 34
(d/) = 03“(1 "W)(Duuf::/) (35)

where v, is the volume fraction of inclusions.
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(3) The mean value of field variables in the matrix
In this case, we can assume that there is no inclusion at point x, i.e.

. 0 rel,
He) = {m eV, (36)

By substituting eqns (36), (32) and (33) into eqns (25) and (26), the mean values of strain
and stress field in the matrix are obtained as

<8;7 = 5?]‘*‘1’](85 _L‘I<Aijklcklpqe;q> (37)
(olf> = afi+v,{Diueh) (38)
where A, = SijpgBps and D = C—~C: 4:C, s,,, is the Eshelby’s tensor. The stress deter-

mined by eqn (38) is same as Mori and Tanaka’s result (1973) if the randomness of inclusion
orientation does not enter in consideration.

CALCULATION FOR RANDOMLY DISTRIBUTED DISLOCATION LOOPS

According to Mura (1982), the eigenstrain &% which is caused by the slip &, of plane s
whose normal vector is n; can be represented in the form

ef(x) = —Y(hin,+b,n)0(s —x) 39)
where §(s—x) is the one-dimensional Dirac Delta Function in the normal direction of s,
i.e.

f&(s —x)dv(x) = fds. (40)

(1) Comparison with the continuum theory of dislocation loop
The elastic strain created by a single dislocation loop is obtained from Mura (1982)
as

51/ = L Kijkl(x - x')Ck,,,,,b,,,n,, ds (x’) (4 l)

where Q is the slip plane. Kroupa (1962) has introduced the dislocation loop density tensor
as

Bon dv (X)) = bn, ds (X'). (42)

Substitution of eqn (42) into eqn (41) gives
EU = J‘ K,/kl(x - xl)cklmnﬁmn dU (x') (43)

where v is the region occupied by continuously distributed dislocation loops. When deter-
mining the tensor f§,, in practice, Kroupa has adopted the following procedure: from the
body we take a volume Av, in which there is a larger number of loops, and divide the loops
into N groups; in the general Kth group are loops with the same Burgers vector 5%, the
same normal ¥’ and the same area 4™, of which there are M®), Then
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Bow = i M™ AP RR R AV 44

kw1

If we assume that An*'b% is the same for every group. one obtains

N
B = Abun, T M®[AV = iAb,n, (45)
k|

where 4 is the number of dislocation loop in unit volume. Substitution of eqn (45) into eqn
(43) gives

&; =4 J.ZKW(X = X") Chimabmtta dv (X). (46)

Equation (46) is the result obtained from the continuum theory of dislocation loops.
Whereas, according to eqns (25) and (39), we know

8,‘; = J:' j. dt‘ (l‘) j;”) Kgi“(x - X')Ck;,,,,,b,,.n,, ds (x) (4?)

where Q(r} is the area of dislocation loop with center at r. For infinitesimal dislocation
loop, one can approximately obtain

j; Kt‘;’kl(x e x’)Ck!nmbmnn dS (X’) = A K:;‘h'(x - r)Cklmnf}mnm (48)
Hr)

By substituting cqn (48) into eqn (47), the same result as eqn (46) will be derived. This may
mean that the eqn (43) is applicable only for infinitesimal distocation loop distribution.
By substituting eqn (39) into eqns (25) and (26), the following results can be derived.

(2) The average field for an unhounded medium

ey> = & —mA 3 (nb;+n,b)) 49)
{o,; = 03 (50)
where A is the meun area of a dislocation loop.

(3) The mean value of field variables within a dislocation loop

(5:’;) = 83 ~mA < é(nibj'*'n)b:)) - %(l _mA)<"ziji‘1Ckqu(npbq +nqb,n)> (Sl)
(aly = o)+ (1 ""”'A)<Dukl(nkbl+"1bk)> (52)
where the components of tensor 4 and D are shown in the Appendix.

(4) The mean value of field variables in the matrix

<8:,’> = 83 - %m"((nibj'*'nib()) + £MA<jijleklm(npbq +nqbp)> (53)
<alf> = a7, = AmALDyjuu(reby +mby)). (54)

Let us take the unit vector e normal to a slip plane, and choose e} and e in that plane in
such a manner that the new base vectors ef relate to the fixed base vectors e, by
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ei = u/ej‘ (55)

where

—sinf —sing cosf cos¢cosh
[T,)=| cos® —singsin® cos¢sind (56)
0 cos ¢ sin ¢

with0 € 0<2rand 0 € ¢ < n/2.

If we assume that every dislocation loop is circular and lies on the slip plane, the
components of the unit normal n(= e%) are (0,0, I). Then, the components of eigenstrain
with respect to the local coordinate system become,

)= (1) =0

(5?1)" = b,
(Efz)L = 1b,
(e%)" = 1b,. (57)

By transforming the tensor in eqns (49)-(54) into the fixed coordinate system and then
averaging the result over all orientations of slip planes, it follows that

by +nb)> = (T Tip(el)™> (58)
<§ﬁijklcklw(”phq+nqbp)> = <7'ul lel(/?aﬂvp)l'(cvma)IA(E:I)"> (59)
<§D..ju("kb!+"lhk)> = (T, T,ﬂ(ﬁam,.)l'(ﬂ:.)"> (60)

(a) Al slip planes are in paralie! with the plane (e, e;)
In this case, we obtain,

le = ‘sia: Tjﬂ = ‘S]ff- (6”

By substituting eqns (58)-(60) into eqns (49)-(54), one obtains

Cey> = el —mA(e})" (62)

Coip =0 (63)

Celp) = ey —mA(Ef)" — (1 —mAY(Au) “ Cupy (62" (64)
{alp> = o+ (1 =mA) (D) ()" (65)

el = e —mAER)" +mA(A;u) " Cupg(e3)" (66)
(o)) = ai;—mAD, )" E)* (67)

where {¢,,> and {o,,) are average strain and stress, and <e/;> and {a/,> are the mean values
of strain and stress within a dislocation loop. Here {&/> and (o) are the mean values of
strain and stress in the matrix.
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(b) The orientation of slip planes is random
Equation (58) becomes

l It fm2
H) = (T,.arl,,(g;;,)L = ﬁ,[ J‘ T.T(e%)" cos ¢ dp dO (68)
- 0 0

and hence
H:i = ( Tu Tjﬁ(‘:izﬂvp)l‘cvpm(s:')l‘ >

= ;EJ‘ j T, T5(Asp0p) Copea (€%)" cOs ¢ dp dO (69)
- 0 0

i P2
Hj =T, Tp(Dyp,) €5 = EL £ TaTs(Dp,) (e}) cos g dp db.  (70)

By substituting eqns (68)—(70) into eqns (49)~(52), one obtains

(&> = e —mAH),

o> =g} (7

el =&l —mAH, ~ (1 —mAYH ],
Lol = al+ (1 —mAYH | (72)

My = ey —mAH +mAH ]
Cally = al—mAll). (73)
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APPENDIX: THE COMPONENTS OF TENSORS 4. D. 4. D

According to Kunin {1983), the tensors A and D have the symmetry of the elliposid and are defined by nine
essential components. We have in the coordinate system connected to the ellipsoid axes:

Ay = ko[31, + (1 -dy)] )} (A1)

Ay = kol 1] (A2)
k

Al:x:=’,?{fzx+’x:+(‘"2}':1}”:4":}] (A3}

I
Duul""o[l"g“olu'*"l)] (Ad)
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Dy = ’o{?»— ml—n[l:&l.:—(l —4}'0)(l,+l:)]} (AS)
Dz =’o{%—1—;;[1:.+1,:+(1—z;vo)(1.+1:)]} (A6)

where
f(}jim%jm AR = J@i+)@+HW@i+3): p.g=1273. (A7)

v is the mean ellipsoid volume. The remaining six tensor components are obtained by a cyclic replacement of the
indices. 1, 2, 3.
The components of tensors 4 and D can be found as limits of tensors A and D in the local coordinate system:
“iJJJJ = Brko(1—-27,): -Zun = dmko(l—274)
-‘i:,x:_\ =dnky(l—7y,)
D = Bz =1,
ro

Di::=royer Diniz= f“"?'o)

which are the only non-zero components of tensor 4 and D.



