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Abstrad-In this paper. the elastic field created by randomly distributed inclusions is studied. The
inclusions are considered to be randomly distributed in the material. and have random orientation
and size. The random point field model is proposed to describe the randomness of inclusion
position. orientation and size. As a special case. when phase transformation inclusions are uniformly
distributed in the material. and have non-random orientation. the theory gives the same result as
Mori and Tanaka (1973. Acta Mt'ta//urgica 21. 571). The elastic field created by randomly distributed
dislocation loops is also considered in some detail. and it is found that the continuum theory of
dislocation loops is applicable only when the size of the dislocation loop becomes infinitesimal.

INTRODUCTION

An inclusion is defined as a sub-domain a in domain D. where cigenstrain is given in O.
and is zero in DO. It may represent a phase transformation particle, a dislocation loop,
etc., which arc the sources of internal stress. The existence of inclusions can greatly influence
the properties of the material. Therefore, it is important to investigate the clastic field
created by inclusions. Seldom is only a single inclusion formed in a material. and it is
natural that the random distribution of inclusions enters in consideration.

Mori and Tanaka (1973) have calculated the average internal stress in the matrix of a
material containing inclusions with transformation strain. They assumed that the average
stress «(1;~/) in the matrix is constant, and derived the stress field (0':) within an inclusion
using Eshelby's famous solution (1957). By the aid of the ergodic theorem. i.e.

(I)

where VI is the volume fraction of inclusion, the average stress in the matrix was calculated.
Tandon and Weng (1986) have further developed Mori and Tanaka's method to obtain the
stress field in a material containing inhomogeneities with different elastic modulus from the
matrix. These approaches are simple, and are intuitive methods with some understanding
of randomness. They arc applicable only for uniform distribution of inclusions with non­
random orientation.

The present investigation attempts to develop a statistical theory which can be appli­
cable to a more general random inclusion problem. The random point field model is
proposed to describe the randomness of inclusion position. orientation and size. As a special
case, when phase transformation inclusions are uniformly distributed in the material. and
have non-random orientation, the theory gives the same result as Mori and Tanaka. The
elastic field created by randomly distributed dislocation loops is also considered in some
detail. and it is found that the continuum theory of dislocation loops is applicable only
when the size of dislocation loop becomes infinitesimal.
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BASIC THEORY

The equation of classical elasticity can be written in the form

(2)

where UI is the displacement component which is zero for the stress-free state. If some
regions of material are subjected to such non-elastic deformations as thermal expansion,
phase transformation, etc., which are called eigen-displacements, the total displacement
component uf is,

(3)

By substituting eqn (3) into eqn (2), the equation becomes,

(4)

or,

(5)

[f the Green's function for an unbounded medium is defined as G(x - x'),

(6)

we obtain

(7)

where v is the region taken by inclusions, and u~ is the displacement which would be
presented in the homogeneous medium under the action of an external stress field.

Let us apply the operator def (I: = def u) to both sides of eqn (7), taking into account
the symmetry of Cljkl, we obtain the equation for the strain,

e,j = e8 +fK;/kl(x - x' )Ck/P'lf.~dt' (x')
'0

where (eo = def uo) is an external strain field, eJq is the eigenstrain, and

Ki1k / = - (Vi C/G/dUklUIl

= -l(v, c/G/k+0 VIGik+O; OkGjl+Oj CkGi/)'

The equation for stress follows from eqn (8), where C1~ = C,/k1e2/t

where

(8)

(9)

(10)

The basic equations for eigenstrain problems are derived as eqns (8) and (10). In what
follows, we consider that the eigenstrain occurs in located regions. [n such a case, the
eigenstrain can be represented in the form
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(11)

where Va(x) is the characteristic function of the region occupied by the a-th inclusion. The
tensor &;., is a constant random variable within the inclusions. and Nt' is the number of
inclusions in the volume t·.

. {Ir a(x) = 0
XE Va

XE Va
(12)

where Va is the region of the a-th inclusion. By substituting eqn (11) into eqns (8) and (10),
we derive that

(13)

( 14)

Since the location, size and orientation of inclusions are all random variables, the stress
and strain determined by eqns (13) and (14) are random field variables. In order to derive
their statistical characteristics. we propose the Random Point Field Model as follows.

Assumptions
(I) In volume V, the number of inclusions obeys the Poisson distribution with par­

ameter A., i.e. for n = 0, 1,2, 0 ••

P,[Nv = nl = (n!)-,[1 A.(r)dV(r)J exp [ - 1;·(f)dV(f)] (15)

where P,[Nv == nl is the probability of Nv = " and A. is the mean value of inclusion number
in unit volume. (2) {N,,; v c V} has independent increments in regions with a restriction
for the intersection of them. i.e. for to = V " t·~ •... , Vk

k

P,[Nv, = n" No, = n~, ... , N". = nkl = n P,[N,., == nil·
i- ,

(16)

According to eqns (13) and (14), the perturbation term in strain and stress field caused by
random inclusions can be represented in the general form:

Nt'

AIj(X) = L A:j)(x - fa; $a)
a-I

(17)

where fa is the center location of the a-th inclusion, and cl»a stands for the orientation and
size of the a-th inclusion. The characteristic function of random field variable AI) is defined
as

(18)

where ail is a constant tensor and I is the imaginary unit.
By substituting eqn (17) into eqn (18), the detailed expression for M,j can be derived

as follows



1460 B. WANG el ai.

(19)

By using the properties ofconditional expectation, eqn (19) can be represented in the form

Mil = P,[N. = 0] + f P,[N. = n]E {exp [I ±aijAlj'JI} (20)
If_I a-I Nco·"

where E[ ] denotes the mean for the orientation of an inclusion. According to the assump­
tions, it can be obtained from (see Wang, 1988)

By substituting eqns (15) and (21) into eqn (20), the detailed expression for Mil can be
represented in the form

(22)

Given Yn is the cumulant of the n-th order und by using the properties of the characteristic
function, we know;

So. the mean value is

(aij =0). (23)

(Aij) = f. ).E[Aljl(x - r,,; cJ>,,)] dv (r,,). (24)

For the same reason, the correlation function can be derived easily.
According to eqn (24), the mean value of the strain field and stress field at point x can

be represented in the form

(25)

(26)

where v" is the region of the ath inclusion with its center at ra • If it is assumed that the center
locations of inclusions form a Homogeneous Poisson Field, i.e. A. = m (const.), eqns (25)
and (26) become
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where Vo is the region of the inclusion with center at zero, and x' = d+r".

(I) The average field for an unbounded medium
According to Kunin's discussion (1983), we know that:

I Ki/*,(X-d-r,,)dv(d) = Bi/*,

LSij*,(x-d-r,,)dv(d) =0

1461

(27)

(28)

(29)

where Bii*, is the elastic compliance tensor. As a consequence of eqn (29). it is obtained
that

(ei/) = £~+vI(e~)

«(1i/) = (1~ (30)

where vI is the volume fraction of inclusions. Equation (30) is just the result which can be
obtained according to the ergodic theorem.

(2) The mean value offield variables within an inclu.vion
In this case, we can assume that there is an inclusion at point x, that is,

(31)

where V.. is the region of the inclusion with center at x. If r"e V.. , and the inclusions are
ellipsoidal inclusions, the following expressions can be obtained (see Kunin, 1983)

iSi/*/(x-d-r,,)dv(d) = Dij*1
"0

(32)

(33)

where the components of tensor A and D are shown in the Appendix. By substituting eqns
(32) and (33) into eqns (25) and (26), the mean values of strain and stress within an
inclusion are obtained as

(34)

(35)

where VI is the volume fraction of inclusions.
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(3) The mean value offield variables in the matrix
In this case. we can assume that there is no inclusion at point x. i.e.

(36)

By substituting eqns (36), (32) and (33) into eqns (25) and (26), the mean values of strain
and stress field in the matrix are obtained as

(37)

(38)

where A ijlcl = sjjpqBpqle1 and D = C - C: A : C, S,jpq is the Eshelby's tensor. The stress deter­
mined byeqn (38) is same as Mori and Tanaka's result (1973) if the randomness of inclusion
orientation does not enter in consideration.

CALCULATION FOR RANDOMLY DISTRIBUTED DISLOCATION LOOPS

According to Mura (1982). the eigenstrain &~ which is caused by the slip hj of plane S

whose normal vector is n j can be represented in the form

(39)

where J(s - x) is the one-dimensional Dirac Delta Function in the normal direction of s.
i.e.

fJ(s - x) dv (x) =fds. (40)

(I) Comparison with the continuum theory ofdislocation loop
The elastic strain created by a single dislocation loop is obtained from Mura (1982)

as

(41)

where n is the slip plane. Kroupa (1962) has introduced the dislocation loop density tensor
as

Pm" dv (x') = bmn" ds (x').

Substitution ofeqn (42) into eqn (41) gives

(42)

(43)

where v is the region occupied by continuously distributed dislocation loops. When deter­
mining the tensor Pm" in practice, Kroupa has adopted the following procedure: from the
body we take a volume L\v, in which there is a larger number of loops, and divide the loops
into N groups; in the general Kth group are loops with the same Burgers vector b!:l, the
same normal n~le) and the same area A(lel, of which there are MIle). Then
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.'"

P_ = L M'·'A(·'n~·'b::'j6.V.
A:-I

Ifwe assume that A(A:'n~A:lb::' is the same for every group. one obtains

,v
P_ = Ab,..n. L M(A:'jt,.v = ).Ab,..n"

A:-I
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(44)

(45)

where ;. is the number of dislocation loop in unit volume. Substitution of eqn (45) into eqn
(43) gives

&ij = AI;"KiiA:ttx-X')CA:/,,,,,b,,,n,,dL'(X')'
.'

(46)

Equation (46) is the result obtained from the continuum theory of dislocation loops.
Whereas. according to eqns (25) and (39), we know

(47)

where OCr) is the area of dislocation loop with center at r. For infinitesimal dislocation
loop, one can approximately obtain

(48)

By substituting eqn (48) into eqn (47), the same result as eqn (46) will be derived. This may
mean that the eqn (43) is applicable only for infinitesimal dislocation loop distribution.

By substituting eqn (39) into eqns (25) and (26), the following results can be derived.

(2) The average field for an unhounded medium

(&ij) = &~-mA(!<njbj+n}bi»

where A is the mean area of a dislocation loop.

(49)

(50)

(3) The mean value of field L'ariahles within a dislocation loop

(t::J ) = &~-mA (Hnjbj+nJh.»- HI -mA)(AjjA:/CA:,pq(nph"+n,,hp» (51)

where the components of tensor A and D are shown in the Appendix.

(4) The mean L'alue offield variables in the matri:,

(&;~) =&~- ~mA«njhj+njb,»+ ~mA(AijA:/CA:lpq(npbq+nqbp» (53)

(54)

Let us take the unit vector e~ normal to a slip plane, and choose et and e~ in that plane in
such a manner that the new base vectors ef relate to the fixed base vectors ej by
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where

[

-sin (J

[Tij] = ~os (J

B. WANG el ai.

-sin ¢ cos f)

-sin ¢ sin (J

cos ¢

cos ¢ cos 0]
cos ¢ sin ()

sin tP

(55)

(56)

with 0 ~ 0 ~ 2n and 0 ~ <P ~ n/2.
[f we assume that every dislocation loop is circular and lies on the slip plane. the

components of the unit normal n( = et) are (0,0. I). Then. the components of eigenstrain
with respect to the local coordinate system become,

(ETI)L = (e!~)L = 0

(e!J)L = bJ

(eT~)L = !b.

(e!J)L = !b2. (57)

By transforming the tensor in eqns (49)-(54) into the filted coordinate system and then
averaging the result over all orientations of slip planes, it follows that

(58)

(59)

(60)

(a) All slip planes are in parallel with the plam' (CI,C2)
[n this case. we obtain,

(61)

By substituting eqns (58)-(60) into eqns (49)-(54), one obtains

(62)

(63)

(64)

(65)

(66)

(67)

where (f.i /) and (ai /) are average strain and stress, and (&[,) and «(1;;> are the mean values
of strain and stress within a dislocation loop. Here <e;~>and <(1~>are the mean values of
strain and stress in the matrix.
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(b) The orientation of slip planes is random
Equation (58) becomes

and hence

By substituting eqns (68)-(70) into eqns (49)-(52). one obtains

(Sii> = s~-mAHij

(a'j> = a~

(sf;) = s~ -mA H,~ - (I -11IA)Hi~

(a:,> = a~+(I-mA)Il,~

(I:;lf> = r.:: -mAIl/;+mAlfi~

(a;1> = a::-mAlli~'

1~65

(68)

(69)

(70)

(71)

(72)

(73)
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APPENDIX: TilE COMPONENTS OF TENSORS A. D. 1. fj

According to Kunin (1983). the tensors A and D have the symmetry of the elliposid and arc defined by nine
essential components. We have in the coordinate system connected to the ellipsoid axes:

14 1111 =ko[3/11 +(1-4yo)/,)

14 1m =10. 0 (1:/-/.1

10. 0
Am: = -,,[1:/ +/I:+(I-2Yoll/1 +/:))

(AI)

(A2)

(A3)

(M)



1466

where
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(A5)

(A6)

'1/l"
'0 = I-}'o . I•• = ~va;

(A7)

v is the mean ellipsoid volume. The remaining six tensor components are obtained by a cyclic replacement of the
indices. I. '1. 3.

The components of tensors A and fJ can be found as limits of tensors A and D in the local coordinate system:

A.lJ JJ = 81tko(l-2i',,); A ,lI ) = 41tko(l-'1i',,)

..i L':J = 41tk,,(I-i'oJ

fJ ,I " = fJ:::: ='"

which are the only non-lero components of tensor ..i and fJ.


